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The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the
integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated
with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that
can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help
improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues
for therapies for callosal agenesis or related neurodevelopmental disorders. Improved genetic studies combined with mouse
models and neuroimaging have rapidly expanded the diverse collection of copy number variations and single gene mutations
associated with callosal agenesis. At the same time, advances in our understanding of the developmental mechanisms involved in
corpus callosum formation have provided insights into the possible causes of these disorders. This review provides the first
comprehensive classification of the clinical and genetic features of syndromes associated with callosal agenesis, and provides a
genetic and developmental framework for the interpretation of future research that will guide the next advances in the field.
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i ized axons, each forming homotopic or heterotopic connec-
ntroduction organized axons

tions, often between distant regions of cerebral cortex (Wahl et al.,

The corpus callosum is the largest of the interhemispheric white mat- 2007, 2009). These connections participate in an array of cognitive

ter tracts in the brain. It comprises >190 million topographically functions including language, abstract reasoning, and the integration
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Figure 1 Tq-weighted sagittal MRI scans showing the structure of the normal human corpus callosum in the full-term infant (A),
8-month-old (B), 2-year-old (C), 8-year-old (D) and adult (E). (A) At birth, the corpus callosum has assumed its general shape but is
thinner throughout. The thickness of the corpus callosum (vertical dimension) increases generally throughout childhood and adolescence.
Growth in the anterior sections is most pronounced within the first 10 years of life (compare C with D), and posterior growth predominates
during adolescence (compare D with E). There is also marked interindividual variation in corpus callosum size and shape. (E) Normal adult
corpus callosum, showing subdivisions established by Witelson (1989). The corpus callosum is initially divided into genu, rostrum, body
and splenium. The body can be further subdivided into the isthmus, and the anterior, middle and posterior segments. RB = rostral body;

AMB = anterior midbody; PMB = posterior midbody; Is = isthmus.

of complex sensory information between the hemispheres (Brown
et al., 1999; Paul et al., 2003). The corpus callosum is classically
divided into four distinct segments based on early histological studies
(Witelson, 1989; see Fig. 1). Recent advances in diffusion tensor
imaging and tractography have provided remarkable insight into
the diversity of interhemispheric callosal connections within each
segment, and has helped to clarify what happens to these connec-
tions when embryonic or foetal development is disturbed (Wahl
et al., 2007, 2009).

Agenesis of the corpus callosum (ACC) is an exceedingly hetero-
geneous condition that can result from disruption of numerous de-
velopmental steps from early midline telencephalic patterning to
neuronal specification and guidance of commissural axons. It can
occur as an isolated finding on MRI, but is more commonly asso-
ciated with a broader disorder of brain development (Schell-Apacik
et al., 2008; Tang et al., 2009). Accordingly, the cognitive and
neurological consequences in patients with ACC vary considerably
from mild behavioural problems to severe neurological deficits.
Deficits in problem solving and social skills are common, and
these often fall within the autistic spectrum (Lau et al., 2013;
Siffredi et al., 2013). Interestingly, isolated ACC predominantly car-
ries a favourable prognosis (Moutard et al., 2003; Sotiriadis et al.,
2012) and these individuals exhibit a different cognitive outcome
from the disconnection syndrome characterized in commissurotomy
patients (Paul et al., 2007). Individuals with ACC therefore provide
a unique opportunity to study not only the mechanisms of callosal
development, but also the broader principles that determine how
the brain responds to disruptions in neurodevelopment.

The increased use and resolution of comparative genomic
hybridization have implicated many more genes and genomic
loci in corpus callosum development (O'Driscoll et al., 2010),
and have revealed a great diversity of genetic causes for ACC
syndromes. At present, however, the cause of 55-70% of cases
with ACC cannot be identified by clinical evaluation (Bedeschi
et al., 2006; Schell-Apacik et al., 2008). The apparently sporadic
nature of ACC makes genetic studies difficult (Sherr et al., 2005;
Schell-Apacik et al., 2008), and it is possible that the cause of
ACC in a proportion of these patients is non-genetic, such as
foetal exposure to alcohol. Indeed, it is often the associated
brain abnormalities found on imaging that point to the underlying
developmental process that is disturbed.

Syndromes incorporating ACC can be broadly classified by the
stage in development that is primarily affected using an approach
similar to previous classifications of cortical malformations
(Barkovich et al., 2012). ACC can occur in association with dis-
orders of neuronal and/or glial proliferation, neuronal migration
and/or specification, midline patterning, axonal growth and/or
guidance, and post-guidance development. Much of what is
known about normal corpus callosum formation has emerged
from studies using mouse models of callosal agenesis. Indeed,
our understanding of the processes underpinning callosal develop-
ment in mice has served as a foundation for much of what is
currently known about human patients with ACC. The purpose
of this review is to systematically outline the clinical features of
all human syndromes associated with ACC, and relate these to the
genetic causes and developmental processes likely to be disturbed.
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Imaging and classifying
agenesis of the corpus
callosum

ACC encompasses either total absence (complete ACC) or absence
from birth of at least one, but not all, of the anatomically defined
regions of the corpus callosum (partial ACC), which results in a
shorter anterior-posterior length (Fig. 2). Hypoplasia denotes a
corpus callosum that is thinner than usual, but has a normal
anterior—posterior extent (Fig. 2). Routine sonography remains the
primary tool for identifying ACC from mid-trimester onwards, when
widening of the interhemispheric fissure, absence of the cavum
septum pellucidum and colpocephaly can be identified (Santo
et al., 2012). Sonography, however, often fails to detect more
subtle cases of partial ACC or callosal hypoplasia (Ghi et al., 2010;
Paladini et al., 2013), as well as associated white matter dysgeneses.
For this reason, prenatal MRI remains the preferred imaging modality
for direct visualization of the corpus callosum in cases with suspected
ACC, and associated abnormalities not detected by sonography. This
is particularly important for offering early counselling to parents, as
additional cerebral abnormalities identified by MRI might suggest
broader disorders of neurodevelopment that are linked with more
severe neurological impairment (Tang et al., 2009).

Advances in tractography based on diffusion tensor imaging
have significantly improved our understanding of how the
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corpus callosum connects with the cortex in normal individuals,
and how these connections are disturbed and re-routed in patients
with ACC. Of particular interest are the so-called ‘sigmoid bun-
dles’, which asymmetrically connect the frontal lobe with the
contralateral occipitoparietal cortex. Sigmoid bundles have been
reported in patients with partial ACC (Fig. 3), and may represent
a pathologic plasticity that has so far not been associated with the
better characterized longitudinal bundles of Probst, which exhibit
conserved topographical organization, albeit confined to the
ipsilateral cortex (Tovar-Moll et al., 2007; Wahl et al., 2009).
The mechanisms that account for this apparent plasticity of inter-
hemispheric wiring in patients with partial ACC, and whether
these patterns of heterotopic connections are compensatory or
detrimental, remain areas of current research.

Mouse models of callosal
development

Mouse models of ACC have proven invaluable in characterizing
the cellular and molecular processes underpinning corpus callosum
development and the individual genes involved. However, pheno-
types in mice cannot always be correlated with human syndromes
as it is not usually clear whether developmental mechanisms
are conserved between species. Neuroimaging approaches are
bridging this gap and provide a means to examine human brain
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Figure 2 Neuroanatomical features revealed by T4-weighted midsagittal and coronal MRI in patients with corpus callosum abnormalities.
(A and D) Patient with complete ACC associated with dorsal expansion of the third ventricle (asterisk), absence of the cingulate gyrus and
sulcus, and absence of the septum pellucidum. (B and E) Patient with partial ACC; the splenium is absent and the rostrum is not fully
formed (arrows). In addition, the leaves of the septum pellucidum are unfused (E; arrowheads). (C and F) Patient with hypoplasia of the
corpus callosum. All segments are present but are diffusely thinned; there is also markedly reduced cerebral white matter volume (F).
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Figure 3 T;-weighted midsagittal MRI and diffusion tensor imaging tractography of two patients with partial ACC (pACC) and a normal
corpus callosum control. (A, C and F) T4-weighted midsagittal MRI scans. (B, D and G) High-angular-resolution diffusion imaging. Arrows
indicate callosal fragments present in partial patients with ACC. (E and H) Q-ball tractography of partial patients with ACC reveals callosal
connections between homotopic and heterotopic cortical regions. Homotopic connections between anterior frontal lobes are conserved in
both partial patients with ACC (blue streamlines in E and H; orange streamlines in H), but the degree of temporal and occipital connectivity
varies. Both patients also show ‘sigmoid bundles’ (yellow streamlines in E and H), which connect the anterior frontal lobe with the
contralateral parieto-occipital region. Images adapted from Wahl et al. (2009).

development and structure. A major issue in translating mouse
models to humans has been that many single gene mouse
models result in embryonic or early post-natal lethality, as the
genes regulate multiple developmental processes. These genes
may act in a similar manner in humans so patients that completely
lack such a gene are not normally seen in the clinic. Instead, point
mutations in such genes (both inherited and de novo) are likely to
be more common in patients and may decrease or impede the
function of the gene without being completely non-functional.
Given this, candidate gene approaches, translating directly from
mouse null mutations, have not been as successful in identifying
the cause of human ACC as might have been expected. However,

mouse models have been instrumental in defining the critical pro-
cesses involved in callosal development and there is reasonable
evidence from direct analysis of human foetal brain tissue that
similar processes and molecules are involved in human corpus
callosum development (Rakic and Yakovlev, 1968; Lent et al.,
2005; Ren et al., 2006). Many of the molecules involved in com-
missure formation throughout the brain and spinal cord are highly
evolutionarily conserved across invertebrates and vertebrates
(Tessier-Lavigne and Goodman, 1996), providing further compel-
ling evidence for their conservation in humans.

The formation of the corpus callosum follows clear and well-
orchestrated developmental events for which we now have a
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reasonable understanding, even if we are yet to discover the
molecular mechanisms underlying these processes. Neurons that
give rise to the axons of the corpus callosum reside principally in
neocortical layers 1I/11l and V, but also in layer VI (Wise and Jones,
1976; Fame et al., 2011). Disruption of the mechanisms that regu-
late the production and migration of these neurons causes brain
malformations such as microcephaly or pachygyria, which are
usually independent of, and occur developmentally before,
corpus callosum formation. These processes are therefore dis-
cussed in later sections of this review only insofar as they relate
to syndromes involving ACC. Perhaps the first step in corpus
callosum formation is patterning of the midline, which provides
a substrate for callosal axons to traverse. All telencephalic com-
missures initially cross the midline within a distinct anatomical
region termed the commissural plate. In mice, four distinct mo-
lecular subdomains of the commissural plate have been identified,
through which distinct commissural projections pass (Fig. 4).
Expression of the secreted morphogen Fgf8 is crucial in the initial
patterning of the forebrain and subsequent development of the
commissural plate, and appears to act as an upstream regulator of
many midline patterning molecules (Hayhurst et al., 2008; Okada
et al., 2008) that correlate anatomically with specific commissures
(Moldrich et al., 2010). Dorsally, the corpus callosum passes
through an Emx7- and Nfia-expressing domain; the hippocampal
commissure passes through domains expressing Nfia, Zic2
and Six3, and the anterior commissure passes through a Six3-
expressing domain in the septum. Perturbed development of
these subdomains results in disruption of the corresponding com-
missural projections passing through the domains, suggesting that
correct patterning of the commissural plate is a prerequisite for
commissure formation (Moldrich et al., 2010).

The specification of neurons in the cortical plate as callosally
projecting neurons, rather than corticofugally or intracortically

commissural
plate

Coronal view at 5.5 weeks gestation

commissural plate

Coronal view at 7 weeks gestation
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projecting neurons (Fame et al., 2011), is an essential process in
callosal development. There are many genes involved in this spe-
cification, as callosal neurons comprise a heterogeneous popula-
tion (Molyneaux et al., 2009). An important regulator of callosal
neuron specification is the transcription factor SATB2 (Alcamo
et al., 2008; Britanova et al., 2008). When Satb2 is functionally
deleted in mice, the corpus callosum fails to form, and instead the
normally callosal neurons project into either the corticofugal tract
or the anterior commissure. This latter result is particularly inter-
esting from an evolutionary perspective as marsupials have no
corpus callosum, but have a larger anterior commissure that
serves the same purpose (Ashwell et al., 1996). Some human
patients with ACC also display a larger anterior commissure
(Fischer et al., 1992; Barr and Corballis, 2002; Hetts et al.,
2006) but neither the underlying cause nor the clinical conse-
quences are yet known.

After callosal neuron specification, these neurons extend an
axon into the intermediate zone, which will later become the
white matter, and make an axon guidance decision to project
medially rather than laterally. Little is known about how this pro-
cess occurs, but it may be regulated by guidance molecules in the
cortical environment. For example, SEMA3A, expressed at the lat-
eral border of the neocortex, repels callosal axons toward the
midline, through its receptor neuropilin 1 (Zhao et al., 2011). A
different family member, SEMA3C, attracts callosal neurons to the
midline (Niquille et al., 2009; Piper et al., 2009). Once callosal
neurons reach the midline they encounter glial and neuronal
guidepost populations that are crucial for their crossing of the
interhemispheric midline. Any perturbation to the development
of these structures results in some degree of callosal agenesis.
The glial wedge and indusium griseum glia surround the corpus
callosum on its dorsal and ventral sides, and both populations se-
crete repulsive and attractive guidance cues to direct axons across

Sagittal view at 13 weeks gestation

Figure 4 Processes underpinning midline patterning in the human foetal brain extrapolated from studies in mouse. Initial expression of
the morphogen FGF8 at the midline is necessary for early forebrain patterning, and subsequent development of the commissural plate
through which all forebrain commissures pass. The commissural plate can be divided molecularly into four distinct subdomains, each
specified by midline patterning molecules that likely act downstream of FGF8. Each forebrain commissure correlates anatomically with a
specific subdomain. The corpus callosum (CC) passes through a domain of EMX7 and NFIA expression; the hippocampal commissure (HC)
passes through domains expressing NFIA, ZIC2 and SIX3, and the anterior commissure (AC) passes through a SIX3-expressing domain in
the septum. Sagittal section at 13 weeks gestation adapted from Rakic and Yakovlev (1968).
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the midline. Current research is focused on how growth cones
modulate responsiveness to guidance molecules as they traverse
the midline. As axons cross the midline, they must decrease
responsiveness to attractive cues at the corticoseptal boundary,
and gain responsiveness to repulsive cues in the same region to
project dorsally in the contralateral hemisphere. Initial investiga-
tions in Xenopus identified the importance of DCC-Robo inter-
actions in silencing axonal attraction at the midline (Stein and
Tessier-Lavigne, 2001). Recent research in mice has shown that
netrin 1 acts as a chemoattractant for pioneering axons originating
in the cingulate cortex, but that it does not attract neocortical
axons. Instead, netrin-DCC interactions inhibit Slit2-mediated
repulsion until axons have crossed the midline (Fothergill et al.,
2013; for a review of axon guidance mechanisms involving inter-
actions between multiple molecular pathways, see Dudanova and
Klein, 2013).

Midline zipper glia develop at the medial pial surface of the
corticoseptal region, and are thought to have an important role
in midline fusion (Silver, 1993; Shu et al., 2003a). Failure of the
two hemispheres to fuse is often correlated with ACC, presumably
as axons lack the proper substrate to cross the midline (Silver and
Ogawa, 1983; Silver, 1993), but experimental evidence for how
midline fusion occurs is currently lacking. The subcallosal sling was
originally thought to be another midline glial population (Silver
et al., 1982), but was later shown to largely comprise neurons
(Shu et al., 2003b). Additional populations of glutamatergic and
GABAergic neurons exist within and dorsal to the corpus callosum,
and together they form a permissive SEMA3C-expressing corridor
through which midline-projecting axons pass (Niquille et al., 2009,
2013). This corridor appears particularly crucial for guiding the first
axons to cross the midline, which arise from the cingulate cortex.
These pioneering cingulate neurons are hypothesized to be neces-
sary for later crossing of axons originating from the neocortex, as
supported by a rostral ACC phenotype in Emx2~/~ mice. In these
mice, the cingulate cortex is not specified and pioneer axons are
missing rostrally but not caudally (Piper et al., 2009).

The reliance of neocortical-originating axons on pioneering
cingulate axons in both mice and humans points to the importance
of axon-axon interactions in callosal development. Before they
encounter pioneering cingulate axons, callosally projecting axons
fasciculate in part through neuropilin 1-mediated interactions
(Hatanaka et al., 2009). The importance of axons from the cin-
gulate cortex appears to be conserved in humans. Decreased size
and connectivity of the cingulum bundles has been documented in
patients with ACC, and this appears to be correlated with the
severity of callosal agenesis (Nakata et al., 2009). However,
how this relates to ACC remains to be determined.

Human corpus callosum
development

The human commissural plate can be anatomically subdivided into
the massa commissuralis through which the corpus callosum and
hippocampal commissure pass, and the area septalis through
which the anterior commissure crosses (Rakic and Yakovlev,

T. J. Edwards et al.

1968; Fig. 4). For many years, the prevailing theory held that
human corpus callosum development occurred in an anterior-
to-posterior fashion, with the first callosal axons crossing the mid-
line at the anterior genu, with those in the rostrum added last
(Byrd et al., 1978; Barkovich and Kjos, 1988). More recently,
neuroimaging studies have suggested that the first axons cross
the commissural plate in the hippocampal primordium, with sub-
sequent connections being made bidirectionally (Barkovich et al.,
1992; Kier and Truwit, 1996; Huang et al., 2006, 2009; Paul,
2011). Callosal neurons originate from layers II/Ill, V and VI of
the neocortex (Fame et al., 2011), although midline crossing of
neocortical neurons in both mouse and human is preceded by
crossing of pioneering axons originating from the cingulate
cortex (Koester and O'Leary, 1994; Rash and Richards, 2001).

Around Weeks 13 and 14 post-conception, pioneering axons
begin to cross the midline; the anterior sections begin to grow
by Weeks 14 and 15, whereas growth of the posterior sections
occurs during Weeks 18 and 19 (Hewitt, 1962; Rakic and
Yakovlev, 1968; Ren et al., 2006). The apparently delayed devel-
opment of the posterior and most anterior callosal sections led to
the assumption that early perturbation of callosal development
results in complete ACC, and later developmental disturbances
result in partial agenesis confined to the posterior corpus callosum
and rostrum. However, current data indicate that connections are
first made in two separate loci: the anterior commissure and the
hippocampal commissure (for a review see Paul, 2011). The early
expansion of the frontal cortex results in the posterior displace-
ment of the hippocampal commissure together with the associated
callosal splenium, while the anterior section of the corpus callosum
expands. It has therefore been suggested that the absence of the
posterior part of the corpus callosum in partial ACC most com-
monly results from failed dorsoventral expansion of the splenium
(Paul, 2011). The two-locus origin of the corpus callosum is to
some degree consistent with the anatomic diversity of homotopic
and heterotopic connections in the partial ACC brain (Tovar-Moll
et al., 2007; Wabhl et al., 2009). However, it still fails to account
for the great diversity of connectivity seen in structurally similar
callosal fragments.

By 20 weeks post-conception, the final shape of the corpus
callosum is complete, although exuberant axonal growth continues
until 2 months after birth; this is then followed by molecular- and
activity-dependent axonal pruning (Innocenti and Price, 2005).
Although the number of callosal fibres is more or less determined
at birth, structural changes continue throughout post-natal devel-
opment, and are most marked during childhood and adolescence
(Luo and O'Leary, 2005; Luders et al., 2010; Garel et al., 2011).

Single gene syndromes with
agenesis of the corpus
callosum

Of the 30-45% of cases with ACC with an identifiable genetic
cause, 20-35% are caused by a mutation affecting a single gene
(Bedeschi et al., 2006; Schell-Apacik et al., 2008). Although some
Mendelian syndromes show complete or near complete ACC
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Figure 5 Processes extrapolated from mouse studies necessary for specification of callosal neurons, correct guidance of axons across the
midline, and target identification in the contralateral cortex. Midline zipper glia develop in the septum and may play a role in fusion of the
midline, which is correlated with corpus callosum development. As axons reach the midline, they encounter and must correctly interpret
multiple attractive and repulsive guidance cues expressed by the glial wedge and indusium griseum. The first axons to cross the midline
arise from the cingulate cortex, and these pioneering neurons appear to be necessary for the subsequent crossing of the majority of callosal
axons, arising from the neocortex (A). Callosal neurons originate from layers I, 1I/1ll, V and VI of the cortex. However, the layer that a
neuron resides in is not sufficient for specification as a callosally projecting neuron, and callosal neuron identity seems to coincide with
expression of the transcription factor SATB2. These neurons project an axon radially towards the intermediate zone, which must then
decide to turn medially rather than laterally (B). Once axons reach the contralateral hemisphere, they must recognize their target area and
synapse with target neurons, presumably through molecular-recognition and activity-dependent mechanisms (C). Exuberant axonal
growth continues after birth and is accompanied by axonal pruning which continues throughout childhood and adolescence.

SVZ = subventricular zone; VZ = ventricular zone.

penetrance, the majority display ACC with incomplete penetrance
(Table 3), which suggests that modifying genetic influences are
often at play. Autosomal dominant, autosomal recessive, and
X-linked causes of ACC have been described; however, no inher-
itance pattern is found in a significant proportion of cases and it is
possible that many arise from de novo mutations. This is consistent
with current data from the California Birth Defects Monitoring
Programme showing that the risk of giving birth to a child with
ACC is 3-fold higher for mothers aged 40 and above (Glass et al.,
2008). It is also possible that oligogenic models of inheritance
account for a proportion of apparently ‘sporadic’ cases of ACC.
By taking into account the known function of the affected gene,
associated mouse models, and neuroanatomical findings in human
patients, it is possible to hypothesize a general pathogenic mech-
anism for callosal agenesis in syndromes commonly associated
with ACC. In this review, single gene syndromes associated with
ACC have been broadly divided into categories based on

abnormalities of important steps in cerebral development: neur-
onal and glial proliferation, midline patterning, neuronal migration
and specification, axon guidance, and post-guidance development.

Abnormal neuronal and glial
proliferation

Early cerebral development is associated with cortical patterning,
driven by a combination of morphogenetic gradients that together
with developing thalamocortical circuits, influence the molecular
identity of neuronal progenitors (O'Leary et al., 2007; Kanold
and Luhmann, 2010). These influences give rise to spatio-tem-
poral-specific signalling domains called patterning centres, which
specify populations of neurons by regulating transcription factor
expression. Many molecules involved in neurogenesis have mul-
tiple roles in development (Fig. 6), and callosal abnormalities as a
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Figure 6 Major mechanisms underlying neurogenesis in the telencephalon relevant to ACC in humans. Many molecules involved in
neurogenesis have multiple functions, and genetic mutations can therefore result in complex neurodevelopmental disorders. Many midline
patterning genes functionally interact with primary cilia, and mutations in these genes give rise to a group of overlapping syndromes
termed ‘ciliopathies’, which can feature ACC. Genes in red are associated with a human syndrome; genes in blue have a mouse model with

ACC but have not yet been associated with a human ACC syndrome,

either human or mouse ACC.

result of abnormal neuronal and glial development are never diag-
nosed in isolation. In these cases, ACC should not be considered a
diagnosis in itself, but should rather be cause for detection of
additional congenital defects. Glutamatergic cortical neurons are
born in the subventricular zone from intermediate progenitor cells,
and from radial glia in the ventricular zone (Noctor et al., 2004;
Kowalczyk et al., 2009). Multiple transcription factors are neces-
sary for specification of cells in the subventricular zone and ven-
tricular zone, but these are beyond the scope of this review.
Intermediate progenitor cells are themselves born from asymmet-
rical division of radial glia within the ventricular zone (Noctor
et al., 2004). To maintain progenitor cell numbers, radial glia
may less frequently undergo symmetrical cell division to expand
the pool of neuronal precursors (Tamamaki et al., 2001). Whether
radial glia produce proliferative or differentiating cells is highly
dependent on the orientation of the mitotic spindle relative to
the ventricular surface (Shioi et al., 2009), and loss of control
over this process results in prenatal microcephaly.

Autosomal recessive primary microcephaly (MCPH) results from
decreased or ineffective proliferation of neurons, generally without

and genes in grey (ligands in black) have not been implicated in

disturbance of cortical organization (for a review, see Mahmood
et al., 2011). Callosal development is usually not impaired in this
group of prenatal microcephalies, so abnormal neuronal prolifer-
ation alone cannot always account for ACC. Syndromes that do
encompass both ACC and microcephaly represent a broad group,
but differ from MCPH in the degree of associated cortical
disorganization.

G-protein signalling modulator 2 (GPSM2) is necessary for the
planar orientation of the mitotic spindle in symmetrical division,
and mutations in GPSM2 result in the autosomal recessive
Chudley-McCullough syndrome, which can display complete
ACC (Diaz-Horta et al., 2012; Doherty et al., 2012). Cortical mal-
formations in Chudley-McCullough syndrome seem to be princi-
pally because of disrupted cortical architecture rather than
decreased neuronal proliferation. Mouse models of homozygous
Gpsm2 mutations show that vertically aligned divisions of radial
glia that would normally produce identical apical progenitor cells
instead produce aberrant progenitors that migrate into the cortex
(Konno et al., 2008; Shioi et al., 2009). It is possible that a similar
disruption to the spatial organization of neurogenesis underlies the
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two primary microcephaly syndromes in which abnormal cortical
architecture and ACC have been well characterized: MCPH5 and
MCPH2, caused by mutations in the abnormal spindle-like, micro-
cephaly-associated gene (ASPM) and WD-repeat domain 62 gene
(WDR62), respectively. Mutations in ASPM and WDR62 genes
together account for at least 55% of MCPH families, and are
directly involved in mitotic spindle orientation of neural precursors
within the ventricular zone (Mahmood et al., 2011). Along similar
lines, homozygous mutations in nudE nuclear distribution E homo-
log 1 (A. nidulans) (NDET), which localizes to the centrosome and
mitotic spindle poles, results in a severe microlissencephaly syn-
drome encompassing cortical disorganization and ACC. These pa-
tients present with marked architectural defects in the cortex,
which is consistent with a combined disorder of neurogenesis
and neuronal migration (Feng and Walsh, 2004; Alkuraya et al.,
2011; Paciorkowski et al., 2013).

The balance between symmetric and asymmetric division of
radial glia is influenced by a series of transcription factors ex-
pressed by neuronal precursors and post-mitotic migrating neu-
rons. Mowat-Wilson syndrome results from heterozygous, mostly
de novo mutations in the ZEB2 gene encoding SMAD interacting
protein 1 (SIP1) (Cacheux et al., 2001; Garavelli and Mainardi,
2007). In neurogenesis, SIP1 is one of several transcription factors
expressed specifically in post-mitotic neocortical neurons, and non-
cell autonomously controls differentiation of neuronal progenitor
cells. Loss of SIP1 function in mice leads to increased superficial
layer neuron production and gliogenesis, all at the expense of
deep layer neurons (Seuntjens et al., 2009). Callosal agenesis is
present in just over 40% of Mowat-Wilson cases (Mowat et al.,
2003; Dastot-Le Moal et al., 2007); however, even patients from
within the same family show an inconsistent callosal phenotype,
suggesting that modifier genes interact with SIP1 to influence
callosal development. In addition, SIP1 appears to have earlier
roles in telencephalic patterning (Verschueren et al., 1999;
Verstappen et al.,, 2008) and neural crest cell migration, and
better genotype-phenotype correlations will improve the accuracy
of prognosis in neonates and infants.

The change in expression of a series of transcription factors
signals the transition from radial glia to intermediate progenitors
to neurons. Expression of the transcription factor eomesodermin
(T-box brain protein 2 in mice) in radial glia is sufficient to induce
intermediate progenitor cell identity (Sessa et al., 2008).
Conversely, expression of PAX6, EMX2 and SOX2 transcription
factors maintains radial glia populations (Graham et al., 2003;
Englund et al., 2005; Sansom et al., 2009). With the exception
of one report of a microcephalic patient with a disruption of the
Eomesdermin gene (Baala et al., 2007), no human mutations in
these genes have been associated with cortical dysgeneses that
recapitulate the severe neurological phenotypes of mouse
models. Indeed, for patients with PAX6 or SOX2 mutations,
mild callosal hypoplasia is a more common finding than partial
or complete ACC (Kelberman et al., 2006).

In syndromes where diffuse thinning of the corpus callosum
(callosal hypoplasia) is a frequent finding and ACC occurs occa-
sionally, it is likely that agenesis lies on a spectrum of pathogenic
mechanisms underlying hypoplasia. Sotos syndrome is an over-
growth syndrome caused by haploinsufficiency in the NSD7 and
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NFIX genes (Kurotaki et al., 2002; Malan et al., 2010). Diffuse
callosal hypoplasia or thinning of the posterior body is a common
finding, whereas callosal agenesis has been reported in only a
small proportion of patients (Schaefer et al., 1997; Melo et al.,
2002; Horikoshi et al., 2006). It is difficult to tease apart the
mechanisms underlying hypoplasia and agenesis; however, it is
likely that the underlying mechanisms are similar, and that genetic
modifiers influence the severity of the callosal phenotype.

Modifying genetic influences also play an important role in
neuropsychiatric disorders such as autism and schizophrenia, in
which variable decreases in callosal size and fractional anisotropy
suggest underlying abnormalities of white matter microstructure
(Woodruff et al., 1995; Downhill et al., 2000; Innocenti et al.,
2003). In general, neuropsychiatric disorders such as schizophrenia
can be considered polygenic disorders, the inheritance of which is
influenced by the combined effect of many genetic modifiers. One
possible exception to this rule, however, is mutations in the
disrupted in schizophrenia 1 gene (DISC7), which have been
implicated in both ACC and a small percentage of schizophrenia
cases (Osbun et al., 2011). DISC1 inhibits neuronal progenitor
proliferation by inhibiting phosphorylation of B-catenin, which
causes cell cycle exit and differentiation (Mao et al., 2009).
Following this, DISC1 acts as a molecular switch that, when phos-
phorylated in post-mitotic neurons, recruits Bardet-Bied| syndrome
(BBS) proteins BBS1 and BBS4 to the centrosome and interacts
with NDE1-like 1 to promote neuronal migration and neurite
outgrowth, respectively (Kamiya et al., 2006; Ishizuka et al.,
2011). A mouse model of Disc7 mutation shows high penetrance
of partial ACC (Shen et al., 2008), and several rare, potentially
pathogenic mutations in DISCT have been identified in patients
with ACC. The number of schizophrenia patients with DISCT mu-
tations and ACC has not been as widely studied. Given the like-
lihood that developmental pathways exist that are common to
both ACC and schizophrenia, however, it is possible that the link
between schizophrenia and callosal development is more wide-
spread than currently thought, and further study may uncover
genetic modifiers involved in these disorders (Walterfang et al.,
2008; Osbun et al., 2011).

Abnormal midline patterning

Early disruptions in patterning of the prosencephalic vesicle can
result in ACC, but this is secondary to more severe pathologies.
Failure of invagination of the dorsal prosencephalon to produce
two hemispheres results in a single hollow vesicle being formed
(holoprosencephaly) and subsequent loss of all midline structures
including the corpus callosum. This condition can affect the entire
telencephalon, or can be restricted to either rostral or caudal
regions, in which case parts of the corpus callosum may still
form provided there is a bridge of white matter across which
axons can traverse the midline (for a review see Marcorelles and
Laquerriere, 2010). Likewise, failure of an established telencephalic
midline to fuse invariably results in callosal agenesis because of
loss of a substrate through which callosal axons can pass (Silver
and Ogawa, 1983; Demyanenko et al., 1999; Brouns et al., 2000;
Wabhlsten et al., 2006). The BALB/c and 129 mouse strains, for
example, display severe retardation of midline fusion in the septal
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region, but guidance of putative callosal axons is normal to the
midline, at which point the axons stall (Wahlsten et al., 2006).
Correct patterning of the commissural plate and midline glial
populations is essential for commissural axons to cross the midline
(Moldrich et al., 2010). Midline glia function primarily as guide-
posts for callosal axons, and secrete guidance molecules to define
migratory boundaries, while each telencephalic commissure must
pass through a molecularly distinct region of the commissural
plate.

Sonic hedgehog (SHH) is a secreted morphogen that bestows
ventral cell identity in the early telencephalon in a concentration-
dependent manner. Human mutations in SHH or its receptor
patched 1 (PTCHT) cause holoprosencephaly, as a result of dis-
turbances too early in dorsal-ventral patterning to fall within the
scope of this review (for a review of the hedgehog signalling net-
work, see Robbins et al., 2012). SHH signalling through PTCH1 is
mediated by low density lipoprotein-related protein 2 (LRP2)
(Willnow et al., 1996; Spoelgen et al., 2005; Christ et al.,
2012), which when mutated, results in the autosomal recessive
Donnai-Barrow syndrome (Kantarci et al., 2007). In Lrp2~'~
mice, loss of Shh signalling almost always results in holoprosence-
phaly (Spoelgen et al., 2005), although human cases present with
milder ventral patterning defects including ACC (Kantarci et al.,
2007), suggesting that there is greater redundancy for the role of
LRP2 in SHH signalling in humans.

In recent years, the association between disorders involving
primary cilia (ciliopathies) and ACC has been increasingly studied.
Primary cilia cooperate with SHH signalling by interacting with the
downstream signalling molecules kinesin family member 7 (KIF7)
and GLI family zinc finger 3 (GLI3) (Liem et al., 2009; Besse et al.,
2011). There are multiple, diverse genetic causes of ciliopathies,
but all of the implicated genes are necessary for the normal func-
tion of primary cilia (Lee and Gleeson, 2011; Novarino et al.,
2011). A summary of the major ciliopathies associated with ACC
is given in Table 1. Mice lacking the ciliogenic transcription factor
RFX3 display altered patterning of the corticoseptal boundary
and abnormal positioning of guidepost neurons associated with
expanded FGF8 expression (Benadiba et al., 2012). This is of
particular importance because of the well-established role of
FGF8 in establishing the commissural plate (Moldrich et al.,
2010). However, neurodevelopmental abnormalities are not
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confined to the corpus callosum. Failure of decussation of superior
cerebellar peduncles and absence of the pyramidal decussation
(Quisling et al., 1999), in addition to distinctive malformations
of the cerebellum (Juric-Sekhar et al., 2012), are consistent with
multiple roles for primary cilia throughout brain development.

GLI3 mutations result in multiple overlapping syndromes includ-
ing acrocallosal syndrome, Greig cephalopolysyndactyly and meto-
pic craniosynostosis, and some of these affected patients present
with callosal anomalies (Vortkamp et al., 1991; Elson et al., 2002;
McDonald-McGinn et al., 2010). Specific mutations in different
regions of GLI3 have helped to delineate the way in which it
transduces SHH signalling, and genotype—phenotype correlations
have been made previously (Kang et al., 1997; Johnston et al.,
2005; Naruse et al., 2010). The severity of these disorders ranges
from polydactyly and hypothalamic hamartoma to holoprosence-
phaly or neonatal lethality, and neuroanatomical abnormalities
appear to correlate with the degree of disruption to the normal
dorsal midline patterning function of GLI3. Abnormalities in mid-
line patterning in GLI3 hypomorphic mice are similar to those
observed in Rfx37/~ mice, whereby ACC is associated with
increased S/it2 and Fgf8 expression (Magnani et al., 2012).
Interestingly, FGF signalling has been implicated in Apert syn-
drome (Wilkie et al., 1995; Slaney et al., 1996; Quintero-Rivera
et al., 2006) and a proportion of patients with Kallmann syndrome
for whom ACC has occasionally been described (Dode et al.,
2003; Falardeau et al., 2008; McCabe et al., 2011). Together,
these syndromes represent disruptions of a common developmen-
tal pathway (Vaaralahti et al., 2012), and corresponding mouse
models all show common midline patterning defects with aberrant
positioning of midline glial guideposts.

Abnormal callosal neuron migration and
specification

Once born from the subventricular or ventricular zones, post-
mitotic neurons migrate outwards along radial glial processes to
form six distinct cortical layers in a birth date-dependent inside-out
manner (Noctor et al., 2001; Huang, 2009). Early born neurons
populate the deeper zones, whereas later born neurons migrate
past them to populate more superficial cortical layers. Radial
migration from the subventricular and ventricular zones towards

Table 1 Major syndromes associated with ACC that are part of the extended ciliopathy spectrum

Joubert syndrome Meckel syndrome Hydrolethalus Acrocallosal Bardet-BiedI
syndrome syndrome syndrome (JSRD)
Selected genes TMEM67, TMEM216, MKS1, MKS3, HYLS1, KIF7, ACLS GLI3, KIF7, HLS2  BBS1-12,
affected RPGRIP1IL, KIF7 TMEM67, RPGRIP1L TMEM67,
MKS1
Major Molar tooth sign (cerebellar ~ Occipital encephalocele,  Severe hydroceph- Exencephaly, Molar tooth sign
neuroanatomical vermis hypoplasia/absence, absence of olfactory alus, absence hydrocephalus,

abnormalities deep interpeduncular fossa,

thick elongated superior partial ACC
cerebellar peduncles)
ACC common/ Uncommon Common

occasional
finding?

bulbs, complete or

of midline ACC
structures (ACC)
Occasional

Common Common
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the cortical plate is achieved by a recurring cycle of leading pro-
cess extension, nucleokinesis, and trailing process retraction
(Kanatani et al., 2005). Several human ACC syndromes have
been associated with the intracellular molecules that underpin
neuronal migration. Not surprisingly, mutations in genes known
to be involved in microtubule structure (e.g. TUBA7TA) and
stabilization (e.g. DCX and DCLK7) severely affect early radial
migration and post-migrational development of cortical neurons
(Gleeson et al., 1998; Deuel et al., 2006; Koizumi et al., 2006a,
b; Poirier et al., 2007). The resulting group of human syndromes
are often severe, characterized by lissencephaly and periventricular
nodular heterotopias, but can also present as disorders mainly of
axon guidance (O'Driscoll et al., 2010; Tischfield et al., 2010;
Chew et al., 2013).

Mutations in the ARX gene cause a nearly continuous series of
syndromes ranging from severe hydranencephaly, lissencephaly
and ACC, to syndromes with no brain malformations visible on
MRI scans (Kitamura et al., 2002; Weaving et al., 2004; Suri,
2005). ARX comprises an aristaless domain and a prd-like home-
odomain (Stromme et al., 2002). In general, non-conservative mu-
tations in either functional domain result in X-linked lissencephaly
with an absent corpus callosum and ambiguous genitalia (XLAG),
whereas a more severe syndrome is observed when both domains
are disrupted (Kato et al., 2004). XLAG is typified by a posterior-
to-anterior gradient of lissencephaly, ambiguous genitalia, hypo-
plastic basal ganglia/hypothalamus, and a slightly thickened cortex
comprising three pyramidal neuron layers, epilepsy and complete
ACC (Bonneau et al., 2002; Miyata et al., 2009). Abnormal cor-
tical layering is consistent with a radial migration defect of cortical
neurons; however, murine Arx is expressed in GABAergic inter-
neurons arising from the ganglionic eminences and the subventri-
cular zone (Friocourt et al., 2008). XLAG is a combined disorder of
tangential and radial neuronal migration, and it is likely that
defects in neurogenesis also exist (Friocourt et al., 2008).
Interestingly, the female XLAG syndrome is less severe than that
of the male, suggesting gene dosage effects of ARX mutations;
carrier females can exhibit isolated ACC with Probst bundles,
variably impaired cognitive function and epilepsy (Bonneau
et al., 2002).

The cortical layer that a neuron will inhabit is primarily deter-
mined by the time of its birth (Desai and McConnell, 2000; Shen
et al., 2006). Once a neuron has migrated to this layer, however,
it must continue to be specified by its layer and target area.
Callosal neuron identity appears to coincide with expression of
the chromatin-remodelling factor Satb2, which has been proposed
to specify rostral callosal projecting neurons at the expense of
corticofugal projection neurons (Alcamo et al., 2008; Britanova
et al., 2008), which are specified by the transcription factors
FEZF2 and CTIP2 (Arlotta et al., 2005; Chen et al., 2005;
Molyneaux et al., 2005; Chen et al., 2008). SATB2 has recently
been shown to functionally interact with the proto-oncogene Ski
to specify callosal neurons (Baranek et al., 2012), as discussed
later in relation to 1p36 deletion syndrome.

In ACC, the neurons that would have crossed the corpus callo-
sum must be re-specified such that they may project subcortically,
intracortically in Probst bundles, or they may preserve some inter-
hemispheric connectivity by projecting to the contralateral cortex
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through the anterior or hippocampal commissures. In the majority
of patients with ACC, the anterior and hippocampal commissures
are absent or small, which is consistent with common processes of
commissure development (Hetts et al., 2006). In a smaller subset
of patients with ACC, but in all cases with ACC with an identified
ARX mutation (Hetts et al., 2006; Kara et al., 2010), the anterior
commissure is enlarged, and limited evidence suggests that this
may represent a compensatory mechanism to maintain inter-cere-
bral transfer of information (Fischer et al., 1992; Barr and
Corballis, 2002). A similar increase in anterior commissure size
has been well established in multiple inbred mouse strains, and
is accounted for by an increase in unmyelinated axons (Livy
et al., 1997). Whether the apparent use of the anterior commis-
sure as a surrogate corpus callosum is compensatory in some pa-
tients will depend largely on whether it can transmit information
from origins normally exclusive to the corpus callosum (Guenot,
1998), and this is not yet clearly established.

Abnormal axon guidance

Correct callosal axon guidance is a tightly regulated process that
relies on two distinct levels of guidance cue response. First, growth
cones must respond to guidance cues specifically and with high
fidelity, and this is dependent on correct temporal and spatial
expression of receptors. Second, underlying axon migration and
the guidance response is a complex network of intracellular actin
and microtubule dynamics, and intercellular recognition and fasci-
culation. Molecules that modulate these processes can be influ-
enced by activation of guidance cue receptors (Fig. 7). The
directionality of growth cones can be influenced by long-range
attractive or repulsive cues, short-range attractive or repulsive
cues, factors affecting axon fasciculation, growth substrate and
cellular influences (Lindwall et al., 2007).

Although understanding the mechanisms of axonal guidance
has elucidated important aspects of normal corpus callosum
development, few patients with ACC syndromes have been iden-
tified with mutations in axon guidance genes. This may be
because of the fact that broad syndromes as a result of neuronal
proliferative or maturational defects display clear neurological dis-
orders, whereas guidance defects could manifest as isolated and
less detectable callosal dysgeneses. Indeed, the correct guidance of
callosal axons is dependent on a large body of signalling molecules
and transcription factors that must be correctly expressed before
and during axon guidance. Guidance cues can also act in parallel
and compensate for one another, and may therefore exhibit sig-
nificant redundancy and reduced ACC penetrance. Conversely,
homozygous null mice for guidance genes such as netrin 1
(Serafini et al., 1996), Robo1 (Andrews et al., 2006) and Dcc
(Fazeli et al., 1997) die as embryos or shortly after birth, and
thus human mutations in these genes might be lethal and not
actually result in clinically evident syndromes. Interestingly, muta-
tions in DCC have been associated with congenital mirror move-
ments, which is somewhat reminiscent of the hopping gait and
mirror movements seen in the Dcc?"%/5a"82 mouse model (Finger
et al., 2002; Srour et al., 2010; Djarmati-Westenberger et al.,
2011). In addition, a weakly expressing haplotype of ROBO7
has been associated with dyslexia and impaired interhemispheric
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Figure 7 Major mechanisms that potentially underlie guidance of callosal axons in humans. Guidance receptors are expressed on the
growth cone of commissural axons, and when bound to their ligand/s, influence microtubule and actin dynamics through second mes-
sengers including RHOA, RAC1 and CDC42. Some guidance receptors, such as DCC, have multiple ligands, and the effects of receptor
activation depend on the bound ligand. Whereas most ligands are secreted from midline glial populations into the surrounding extra-
cellular matrix, ephrin ligands are membrane-bound and can initiate reverse signalling. The effects of ephrin receptors vary depending on
the subtype of receptor activated, and ligands expressed. Genes in red are associated with a human syndrome; genes in blue have a mouse
model with ACC but are not associated with a human ACC syndrome, and genes in grey (ligands in black) have not been implicated in
human or mouse ACC. 1, based on overexpression studies, NGEF increases RHOA activity relative to RAC1 and CDC42.

transfer of auditory signals (Hannula-Jouppi et al., 2005;
Lamminmaki et al., 2012).

Craniofrontonasal syndrome, caused by mutations in the EFNB71
gene encoding ephrin-B1, is an exception to the lack of human
ACC syndromes associated with axon guidance (Wieland et al.,
2004, 2005). Craniofrontonasal syndrome is an atypical X-linked
recessive disorder as females are severely affected whereas males
show mild or no abnormalities; it typically presents with craniofa-
cial and skeletal abnormalities, and less commonly, ACC (Saavedra
et al., 1996; Wieacker and Wieland, 2005). The reason for low
ACC penetrance (a review of the literature found ACC in 10% of
cases) is likely because of the redundant nature of the ephrin
family, which has been verified by mouse models of single and
double gene knockouts (Table 2) (Wieacker and Wieland, 2005;
Mendes et al., 2006). Ephrins define migratory boundaries in mul-
tiple developmental contexts; in callosal development, they are
expressed in the glial wedge and redundantly direct axons
toward the midline (Mendes et al., 2006). Heterozygous EFNB1
mutations in females seem to have a dominant negative effect

owing to the multiple interactions possible between ephrin ligands
and receptors of different subclasses. In females, random X-inacti-
vation produces two types of cell, those expressing functional
ephrin-B1 and those expressing the mutant ephrin-B1. Mutant
ephrin-B1 expressing cells may present alternative ephrin ligands
with different receptor affinity, resulting in abnormal cellular cross-
talk within these mosaic compartments and unclear migratory
boundaries (Twigg et al., 2004; Wieland et al., 2004; Wieacker
and Wieland, 2005; Davy et al., 2006).

Axonal growth and fasciculation are dependent on cell adhesion
molecules (CAMs), and mutations in a member of the immuno-
globulin family of CAMs, L1CAM, cause a broad range of X-linked
disorders collectively termed L1 syndrome (Fransen et al., 1995).
The phenotypic spectrum of the X-linked L1 syndrome comprises
partial ACC, CRASH syndrome (corpus callosum hypoplasia,
retardation, adducted thumbs, spasticity and hydrocephalus),
MASA syndrome (mental retardation, aphasia, shuffling gait
and adducted thumbs), X-linked complicated ACC, X-linked
complicated  spastic  paraplegia type 1, and various
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Table 2 Continued

References®

Mouse phenotype

Location

HGNC ID

OMIM

Gene #

Associated midline defects

Midline
glia

Callosal phenotype

cAccP

(human)

Number

Anterior

Hippocampal
commissure

pACC®

commissure

GROUP V - Abnormal post-guidance development

Rudolph et al., 1998

2q33.3

2345

123810

cAMP responsive element binding

protein 1 (CREB1)
Forkhead box C1 (FOXC1)

Zarbalis et al., 2007

6p25.3

3800

601090

Unclear function in corpus callosum development

Meathrel et al., 2002

Y (100%)

9681 19p13.3

601576

Protein tyrosine phosphatase,

receptor type, S (PTPRS)
Insulin-like growth factor binding

Doublier et al., 2000

Y (100%)

7p12.3

5469

146730

protein 1 (IGFBP1)

“References in the table that are not included in the reference list can be found in the Supplementary material.

BFor the purposes of this review, complete ACC (cACC) is defined as a complete absence of all callosal axons, or failure of all callosal axons to cross the midline. Partial ACC (pACC) has therefore been defined to encompass

incomplete agenesis, where at least part of the corpus callosum can be identified.

“Phenotype varies with mouse strain.

Y

yes; N = no.

Blank cells signify that the given abnormality was not mentioned by the reference/s.
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hydrocephalus-associated syndromes (Rosenthal et al., 1992;
Jouet et al., 1994; Vos et al., 2010). In general, males with L1
syndrome display a phenotype at the severe end of the disorder
spectrum, which includes macrocephaly, mental retardation and
spastic paraparesis. Other individuals can have ACC with Probst
bundles and subcortically projecting tracts in the absence of cor-
tical dysplasia, which is consistent with a role for L1CAM in axonal
guidance and growth (Chow et al., 1985; Halliday et al., 1986;
Graf et al., 2000). The genotype-phenotype correlations for
neurological abnormalities in L1 syndrome are well characterized
(Vos et al., 2010), and generally depend on whether homophilic
L1CAM interactions or heterophilic interactions are disrupted (De
Angelis et al., 1999, 2002; Itoh et al., 2011).

In addition to genetic causes, it is likely that a significant pro-
portion of cases with ACC are caused by environmental insults.
One example of this is foetal alcohol spectrum disorders, which
can present with either complete or partial ACC, or callosal hypo-
plasia (Riley et al., 1995). Early exposure to alcohol has been
proposed to result in an overall decrease in white matter volume
and organization, and structural abnormalities including ACC
(Spadoni et al., 2007). Alcohol exposure silences growth cone re-
sponses to guidance cues such as SEMA3A and netrin 1, which are
involved in corpus callosum development (Sepulveda et al., 2011).
These features are similar to the L1 syndrome spectrum; ethanol
inhibits L1CAM-mediated cell-cell adhesion (Charness et al., 1994;
Ramanathan et al., 1996) and neurite outgrowth (Bearer et al.,
1999), suggesting that a comparable axon growth/guidance
defect is common to both syndromes.

Abnormal post-guidance development

Synaptogenesis and synaptic specificity are usually achieved by a
combination of molecular recognition and activity-dependent sig-
nals that prune initially formed synapses. The mechanisms by
which callosal axons make specific synaptic connections are likely
to be dependent on the origin and target of callosal axons and the
functional information that will be transmitted. Andermann syn-
drome is one of a small group of neurodevelopmental disorders
known to result from an ion transporter defect, namely homozy-
gous mutations in SLC72A6 encoding the K-Cl transporter KCC3
(Howard et al., 2002). It is also a member of an interesting group
of ACC-associated syndromes that feature nervous system degen-
eration post-natally. Andermann syndrome has presented in neu-
roimaging studies as a primary defect in axonal growth/guidance
(Dupre et al., 2003). It has been suggested that loss of KCC3 in
migrating callosal neurons increases their susceptibility to damage
early in development. In support of this hypothesis, homozygous
SLC12A6 loss of function mice display callosal hypoplasia, but no
specific abnormality in callosal development has been identified
(Shekarabi et al., 2012). It may also be the case that activity-
dependent mechanisms are one aspect of callosal development
in which humans and mice differ.

ACC has been noted in several enzyme deficiencies affecting
cellular metabolism, including pyruvate dehydrogenase deficiency
(Patel et al., 2012), fumarase deficiency (Coughlin et al., 1998;
Mroch et al., 2012), desmosterolosis (Zolotushko et al., 2011) and
Smith-Lemli-Opitz syndrome (Garcia et al., 1973; Fierro et al.,
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1977). The causative link between cellular metabolism disorders
and callosal agenesis is unclear, although the majority of callosal
abnormalities are hypoplastic, and may be secondary to post-natal
CNS development or white matter injury (Bamforth et al., 1988;
Weinstein et al., 2003). Deficient cholesterol synthesis, in particu-
lar, has been linked with abnormal neurological development.
Desmosterolosis results from homozygous or compound heterozy-
gous mutations in DHCR24, and ACC has been reported in all
cases where imaging has been performed (Zolotushko et al.,
2011). Desmosterolosis shares midline neurological defects with
Smith-Lemli-Opitz syndrome, which results from homozygous
mutations in DHCR7 (Fitzky et al., 1998; lira et al., 2003). In
addition to its role in myelination, cholesterol is required for
post-translational modification of the ventral morphogen SHH
(Grover et al., 2011), and therefore has a direct role in neural
patterning.

Agenesis of the corpus
callosum as a result of copy
number variations

Despite the progress made in identifying and characterizing single-
gene Mendelian disorders associated with ACC, a clear genetic
cause will not be identified in the majority of patients (Bedeschi
et al., 2006; Schell-Apacik et al., 2008). Improved and increased
use of microarray comparative genomic hybridization has resulted
in the identification of multiple rare copy number variants asso-
ciated with ACC, and this genotype-to-phenotype diagnostic
approach has resulted in a series of new recognizable disorder
spectrums (Table 4 and Supplementary Table 1). A recent analysis
of cytogenic, fluorescence in situ hybridization and microarray
studies of 374 patients with reported or confirmed ACC identified
many new loci associated with ACC and demonstrated the power
of this approach (O'Driscoll et al., 2010).

One of the most notable copy number variants associated with
callosal agenesis is 1q42-g44 deletion syndrome, which is strongly
associated with ACC of variable severity and post-natal micro-
cephaly (O'Driscoll et al., 2010). The major locus within this
region appears to be 1g44, which contains the AKT3 gene.
Over 90% of patients with ACC and microcephaly were found
to have a disrupted AKT3, a gene shown to promote neuronal
survival in mouse models (Tschopp et al., 2005; Boland et al.,
2007; Hill et al., 2007; Merritt et al., 2007). Although dysregula-
tion of the PI3K/AKT-signalling pathway may explain the apparent
proliferative/apoptotic abnormality, some patients have presented
with 1g42-44 deletions outside the AKT3 gene (Poot et al., 2007;
van Bon et al., 2008; Malan et al., 2010), suggesting that at least
one more neurodevelopmental gene exists within the locus.
Haploinsufficiency of other genes, such as DISP71 located in
1941, has been suggested as a cause of midline developmental
defects. In particular, ZBTB18 is a promising candidate, as one
patient with post-natal microcephaly and ACC was found to
have a reciprocal translocation with a breakpoint between AKT3
and ZBTB18 (Boland et al., 2007; Perlman et al., 2013). In reality,
there are likely multiple genes involved, reflecting combined

T. J. Edwards et al.

defects in both midline and lateral axis patterning (Filges et al.,
2010; O'Driscoll et al., 2010).

In some cases, phenotypic effects of microdeletions or micro-
duplications are likely to result from the disruption of the syner-
gistic action of two or more genes. Miller-Dieker lissencephaly
syndrome is a contiguous gene deletion syndrome involving
genes within the chromosome 17p13.3 region (Cardoso et al.,
2003; Nagamani et al., 2009; Bruno et al., 2010; Mignon-Ravix
et al., 2010). Miller-Dieker syndrome is characterized by a com-
bination of classic lissencephaly, microcephaly, seizures and facial
dysmorphisms, and is more severe than isolated lissencephaly. In
both isolated lissencephaly and Miller-Dieker syndrome, the LIS7
gene is affected, and the more severe phenotype in Miller-Dieker
syndrome has been attributed to deletion of the YWHAE gene
distal to LIST (Bruno et al., 2010). Both genes are involved in
neuronal migration, and interact indirectly through the CDK5 sub-
strate NDEL1 (Niethammer et al., 2000; Toyo-oka et al., 2003).
Interestingly, patients with 17p13.3 microduplications present
within the autistic spectrum, which is more severe when LIS7,
but not YWHAE, is duplicated, suggesting that interactions
between the proteins are related to the pathogenesis of the
syndrome (Bruno et al., 2010).

8p rearrangements are frequently associated with brain malfor-
mations (Robinow et al., 1989; Newton et al., 1993; Schrander-
Stumpel et al., 1994; Winters et al., 1995; O'Driscoll et al., 2010).
The 8p inverted duplication/deletion is one of the most common
and results in brain malformations including ACC and speech
problems (O'Driscoll et al., 2010). Fifteen cases of mosaic tetras-
omy of 8p have also been described, of which ACC was identified
in 10 (Wilson et al., 2010). A recent review of the imaging litera-
ture confirmed ACC in 25% of published 8p rearrangements
reported with callosal agenesis (O'Driscoll et al., 2010), although
variations in penetrance exist depending on the type of rearrange-
ment. As ACC is apparently most common in inversion duplica-
tion/deletions (O'Driscoll et al., 2010), it is likely that at least two
loci exist, one that contributes to ACC when deleted, and another
that contributes to ACC when duplicated. This explanation is sup-
ported by the recent description of ACC in two patients with 8p
duplications only (Nieh et al., 2012; Sajan et al., 2013).

1p36 deletion syndrome (monosomy 1p36) is one of the most
common chromosome deletions (incidence is 1 in 5000), but has a
relatively low penetrance of ACC (5.8%; Table 3) (Gajecka et al.,
2007; Bahi-Buisson et al., 2008; Battaglia et al., 2008). The
phenotypic diversity of this syndrome and apparent lack of geno-
type-phenotype correlations illustrate the complexity of contigu-
ous gene syndromes. Common neurological features include
pachygyria, polymicrogyria, hydrocephalus and ACC (Gajecka
et al., 2007; Battaglia et al., 2008). It has been suggested that
haploinsufficiency of functionally unrelated but contiguous genes
is responsible for some phenotypic variability (Redon et al., 2005;
Rosenfeld et al., 2010); however, the expression of long-distance
genes may also be affected through a positional effect of the
deletion (Giannikou et al., 2012). Epigenetic and modifier factors
may contribute to the phenotype, and herein lies a major difficulty
in pinpointing causative genes in contiguous deletions. The hap-
loinsufficiency of one gene in 1p36 deletions, SK/, is of particular
interest for ACC (Colmenares et al., 2002; Rosenfeld et al., 2010)
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as it was recently reported to functionally interact with SATB2
to specify callosally projecting neuron identity (Baranek et al.,
2012).

Agenesis of the corpus
callosum syndromes of
unknown aetiology

Several ACC syndromes are yet to have causative genetic muta-
tions identified (Table 5). Confirming the underlying genetic cause
of inheritable syndromes is complicated by the high incidence
of de novo mutations, genetic heterogeneity and difficulties
achieving consistent clinical diagnosis.

Many of these syndromes are of interest because of the diver-
sity of organ systems affected, which may allude to their under-
lying genetic aetiology. Curry-Jones syndrome is a rare disorder
associated with ACC and ventriculomegaly, polysyndactyly, eye

T. J. Edwards et al.

defects and malformations of the skin and gastrointestinal tract
(Temple et al., 1995). Importantly, the association of this syn-
drome with the development of skin and CNS neoplasias has
implicated the SHH signalling pathway in its pathogenesis. In add-
ition, the defects in limb development seen in patients with Curry-
Jones syndrome are similar to those reported in patients with con-
firmed mutations in the SHH signalling pathway (Johnston et al.,
2005). If nothing else, Curry-Jones syndrome illustrates the neces-
sity of investigating multiple organ systems if ACC is identified, as
it often serves as a relatively easily identifiable phenotypic marker
for wider developmental disturbances.

Aicardi syndrome is another multisystem disorder with a com-
plex neurological phenotype, and is only observed in females
(and XXY males). Neurological features incorporate severely
disordered neuronal migration, ACC, infantile spasms and chorio-
retinal lacunae (Aicardi et al., 1965; Hopkins et al., 2008; Fig. 8).
The interhemispheric and intrahemispheric mis-wirings that result
from aberrant neuronal migration are profound. Diffusion tensor
imaging has shown widespread disruption of corticocortical tracts

Figure 8 Associated malformations commonly seen in patients with ACC. (A) T,-weighted axial MRI scan showing complete ACC
associated with a third ventricle cyst (asterisk) and periventricular nodular heterotopia (arrowheads). (B) To-weighted axial MRI scan
showing ACC (asterisk) associated with polymicrogyria (PMG) (arrowheads) and copolcephaly (+). (C) T,-weighted axial MRI scan
showing ACC with subcortical heterotopia (SCH) (arrowheads) and marked asymmetry of the cerebral hemispheres. Midsagittal (D) and
axial (E) T4-weighted MRI scan of a patient with Aicardi syndrome revealing a constellation of neuroradiological features, including
complete ACC (arrow), grey matter heterotopia (white arrowhead), cystic dilation of the left lateral ventricle (asterisk) and enlarged fourth
ventricle (+). In addition, there is marked asymmetry of the cerebral hemispheres.
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not replicated in matched subjects with callosal agenesis and
cortical malformations (Wahl et al., 2010). Pachygria and periven-
tricular and subcortical heterotopias are consistent with an inter-
ruption of radial neuronal migration, although the extent of
corticocortical disorganization suggests that the neuronal migra-
tion defect is almost universal. The presence of type 2 interhemi-
spheric cysts in some patients is intriguing, and may be secondary
to failure of midline formation resulting from a related abnormality
in migration and positioning of midline glial and neuronal popula-
tions. Given the widespread migration defects, it seems unlikely
that the formation of Probst bundles in Aicardi syndrome is adap-
tive or compensatory, but rather suggests that they may represent
multiple aetiologies and functions that differ depending on the
developmental processes that are disturbed.

Increased use of array comparative genomic hybridization has
highlighted the genetic heterogeneity of disorders such as Toriello-
Carey syndrome, which has ACC as a defining feature. It is possible
that several syndromes previously considered distinct are in fact
a cluster of clinical features that are aetiologically unrelated. In
Toriello-Carey syndrome, microdeletions at 22q12 (Hatchwell
et al., 2007; Said et al., 2011) and 1942 (Hatchwell et al., 2007),
an unbalanced translocation t(8;18)(p12;q22) (Martin-Denavit
et al., 2004), and a cryptic translocation t(10q;16p) (Martin et al.,
2002) have all been reported to produce a similar phenotype. These
diverse findings may also be an artefact of the difficulties in diagnos-
ing a complex syndrome based on clinical features alone.

Conclusion

ACC remains one of the most complicated neurological birth
defects described, given the sheer number of developmental
processes that may be disrupted. As a corollary, callosal agenesis
rarely occurs in isolation, and is a specific and relatively easy-
to-detect phenotypic marker for developmental disorders. Mouse
models have vastly improved our understanding of the mechan-
isms of normal corpus callosum formation, and have paved the
way for a developmental classification system based on the clinical
and genetic features of human ACC syndromes.

Callosal development can be affected by the disruption of
neurogenesis, telencephalic midline patterning, neuronal migration
and specification, axon guidance and post-guidance development.
Recent genetic studies have identified an abundance of copy
number variations and single gene mutations in patients with
ACC, but have also highlighted the underlying genetic complexity
of many ACC syndromes. Meanwhile, continually improving neu-
roimaging data are allowing us to understand how genetic muta-
tions affect brain connectivity, and in turn how the brain responds
to developmental perturbations. These approaches have, in com-
bination with animal models, improved our understanding of the
mechanisms involved in callosal agenesis, and may pave the way
for future therapies tailored towards individual patients.
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