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Agenesis of the corpus callosum (ACC) is a common brain

malformation of variable clinical expression that is seen in many

syndromes of various etiologies. Although ACC is predominant-

ly genetic, few genes have as yet been identified. We have

constructed and analyzed a comprehensive map of ACC loci

across the human genome using data generated from 374 patients

with ACC and structural chromosome rearrangements, most

having heterozygous loss or gain of genomic sequence and a few

carrying apparently balanced rearrangements hypothesized to

disrupt key functional genes. This cohort includes more than 100

previously unpublished patients. The subjects were ascertained

from several large research databases as well as the published

literature over the last 35 years. We identified 12 genomic loci

that are consistently associated with ACC, and at least 30 other

recurrent loci that may also contain genes that cause or contrib-

ute to ACC. Our data also support the hypothesis that many ACC

loci confer susceptibility to other brain malformations as well as

ACC, such as cerebellar hypoplasia, microcephaly, and polymi-

crogyria. The database presented here provides a valuable re-

source for diagnosis and management of individuals with ACC

and individuals with chromosome rearrangements in whom

ACC should be suspected, and of course for identifying ACC

causal and contributory genes. Well-defined diagnostic criteria,

improved scanning techniques, and increased recognition of

associated abnormalities will further facilitate gene mapping

and allow definition of distinct syndromes within this heteroge-

neous group of patients. � 2010 Wiley-Liss, Inc.
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INTRODUCTION

The corpus callosum (CC) is the largest of three forebrain com-

missures in humans, and originates from the most rostral segment of

the developing forebrain. Agenesis of the corpus callosum (ACC) is a

common brain malformation with significant variability in expres-

sion [Glass et al., 2008] (Fig. 1). Although ACC is commonly

associated with genetic disorders [Dobyns, 1996; Schell-Apacik

et al., 2008], the underlying genetic causes remain elusive. Recent

improvements in molecular and cytogenetic technology have led to a

rapid increase in the number and definition of copy number variants

(CNVs) [de Smith et al., 2007; Perry et al., 2008] and to a broadening

in our understanding of the many chromosomal regions and

syndromes associated with ACC. We therefore present and analyze

a comprehensive map of ACC loci in the human genome using data

generated from 374 patients with ACC and structural chromosome

rearrangements, including at least 101 previously unpublished cases.

The subjects were ascertained from large research databases main-

tained by the authors (WBD, EHS), the Californian Birth Defects

Monitoring Program (CBDMP—see the Methods Section), three

online databases of patients with chromosome rearrangements

(DECIPHER, ECARUCA, DGAP—see the Methods Section), and

a comprehensive literature review.

Using these combined strategies we identified 12 loci with 6 or

more subjects with ACC, and another 18 loci with 3–5 patients with

ACC. We also found many other possible loci (17) described in

small numbers of patients with ACC, which may represent either

Additional supporting information may be found in the online version of

this article.
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low penetrance ACC loci or incidental findings (Fig. 2 and see

supporting information Table I which may be found in the online

version of this article). Many of the latter had poorly defined critical

regions, other incidental chromosome abnormalities unrelated to

the ACC phenotype, or an incorrect diagnosis of ACC. From our

analysis of these data, we hypothesize that the human genome

contains over 30 loci in which heterozygous loss or gain of gene

products causes or contributes to ACC. Furthermore, some of the

higher penetrance loci contain two (or more) ACC causative genes,

and several ACC loci also confer susceptibility to other brain

malformations such as cerebellar hypoplasia, microcephaly, and

polymicrogyria. These data provide information that will assist in

the interpretation of abnormal karyotypes and microarray results in

pre- and postnatal medical and research settings and direct genetic

investigation in patients with brain imaging abnormalities involv-

ing the CC. It also has the potential to contribute to our knowledge

of the genes and gene pathways involved in normal and abnormal

brain development.

METHODS

The CC is the principal connection between the right and left

cerebral hemispheres. Four contiguous segments can be seen on

MRI brain imaging: the rostrum, genu, body, and splenium (Fig.

1A,B). Several different terms have been used in the literature to

describe callosal malformations. Complete absence is referred to

as ACC. Partial absence, typically involving the anterior rostrum

and posterior body and splenium, is preferentially described as

hypogenesis although the terms partial agenesis and dysgenesis

are also used [Barkovich, 2002; Hetts et al., 2006; Schell-Apacik

et al., 2008]. Hypoplasia of the CC describes a thin CC where all

the segments are present but abnormally thin, and has sometimes

been used when the CC appears short but otherwise normally

formed, as well as thin.

Sources of Data
We retrieved data from our own, largely unpublished, research

databases (sources (1) and (2) below) and supplemented this with

data from several appropriate online databases. We also consulted

all available reports of CC anomalies associated with cytogenetic

abnormalities in the published medical literature from 1965, with a

particular emphasis on reports since the last review in 1996

[Dobyns, 1996]. Our primary sources included:

(1) Lisdb: This is a large database of �5,400 patients ascertained

based on birth defects of the brain and other neurodevelop-

mental disabilities collected and maintained by WBD. Of these

409 are recorded to have a callosal disorder documented by

brain imaging studies, some of which have been the subject of

previous publications.

(2) Brain Development Research Program (BDRP): This is a study

of cortical malformations lead by EHS, with a focus on callosal

anomalies that includes 456 patients with ACC as detected by

MRI. Only clinically confirmed cytogenetic data are included

from this cohort.

(3) California Birth Defects Monitoring Program (CBDMP)

Database (www.cbdmp.org): This is a database maintained by

FIG. 1. Agenesis or hypogenesis of the corpus callosum in six patients with various chromosome deletions on T1-weighted midline sagittal magnetic

resonance images. A,B: The normal shape of the corpus callosum is shown in two individuals with arrows pointing to the rostrum (r), genu (g), body

(b), and splenium (s). C: Agenesis or complete absence of the corpus callosum in a girl with deletion 1q44 (LR05-202). D: Hypogenesis of the corpus

callosum with absent rostrum, thin and short body and absent splenium in a boy with deletion 1q44 (LR06-076). E: Severe hypogenesis in a girl with

deletion 6q26-q27 (LR06-191). F: Mild hypogenesis with a short, comma-shaped corpus callosum in a boy with deletion 6q26-q27 (LR00-183). G:

Hypogenesis in a girl with interstitial deletion 6q25 (LR00-226). H: Mild hypogenesis with a short, comma-shaped corpus callosum in a girl with

interstitial deletion 14q13 (LR01-197).
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the State of California Department of Public Health and the

March of Dimes Foundation that identifies children with birth

defects including ACC. From a review of data between 1993 and

2003, 645 cases of ACC were identified. However, brain imaging

studies were not available for children listed in this database.

(4) European Cytogeneticists Association Register of Unbalanced

Chromosome Abberations (ECARUCA; agserver01.azn.nl:

8080/ecaruca/ecaruca.jsp). This is an online, searchable data-

base of over 4,000 patients with chromosomal rearrangements.

Some, but not all, have microarray-based information.

(5) DatabasE of Chromosomal Imbalance and Phenotype in Humans

using Ensembl Resources (DECIPHER; http://decipher.sanger.

ac.uk). This is an online, searchable database of patients with

chromosomal rearrangements defined using microarray data.

(6) Developmental Genome Anatomy Project (DGAP; www.

bwhpathology.org/dgap). This is an online searchable database

of apparently balanced chromosomal rearrangements in pa-

tients with multiple congenital anomalies.

(7) PubMed search, using EndNote(R) as a search engine,

1996–2008 using the terms corpus callosum, absent corpus

callosum or corpus callosum agenesis, dysgenesis or hypopla-

sia. This search obtained �2,000 references, which were then

reviewed by title and abstract. The relevant papers were then

reviewed in their entirety to obtain more detailed information.

Published images confirmed the presence of ACC in only a

small minority of papers.

The retrieved data were reviewed to document the individual

karyotypes, which were recorded using ISCN nomenclature

[Shaffer and Tommerup, 2005], which often required modifica-

tion. We excluded papers where published cytogenetic data were

incomplete, for example, when the breakpoints were not given or

could not be determined from illustrations. Where additional FISH

or microarray studies were performed, we used these data to update

the karyotype. We calculated the size of rearrangements using the

UCSC database (http://genome.ucsc.edu/cgi-bin/hgGateway) con-

sidering any involved bands as deleted in their entirety. We ex-

tracted key data regarding the phenotype and separated these into

neurodevelopmental and other abnormalities. The former includes

brain malformations, specific developmental disabilities and neu-

rological conditions such as seizures. The latter includes abnormal

growth, structural defects of other systems and dysmorphic fea-

tures. Where figures of brain imaging studies or postmortem data

were included in the publication, we were able to confirm the

presence of a callosal abnormality.

Inclusion Criteria
Patients from literature reports or online cytogenetic databases with

ACC were included. The CC is easily seen on mid-sagittal magnetic

resonance imaging (MRI) scans. It is less easily, and less reliably,

visualized using other imaging modalities, such as ultrasound

and computerized tomography (CT) scans. Complete ACC is a

relatively straightforward diagnosis but subtle variation in callosal

width or length is subject to the interpretation and experience of the

reporting physician. Where brain imaging figures or postmortem

results were published, we attempted to use these to confirm

whether CC abnormalities were present and looked for evidence

of other brain malformations. Several different terms were used

to describe CC abnormalities without any obvious consensus.

These included ‘‘absent,’’ ‘‘agenesis,’’ ‘‘dysgenesis,’’ ‘‘hypogenesis,’’

‘‘hypoplasia,’’ ‘‘thin,’’ and ‘‘partial agenesis.’’ For this reason, we

have used ACC as an umbrella term to cover all of these descriptions.

We identified many patients from literature reports or online

cytogenetic databases such as DECIPHER, which usually did not

contain photos or scan images. In these instances we relied on the

documented reports of ACC.

Exclusion Criteria
CC abnormalities are found in severe forebrain malformations such

as holoprosencephaly, a part of more general CNS disruption such

as neural tube defects, and have been described as a part of

degenerative conditions such as Andermann syndrome and some

metabolic disorders. In these disorders, the callosal abnormalities

are likely to be secondary to different pathological processes than in

cases of isolated or complex ACC, which were more common.

Reports of these disorders were excluded from this study.

Construction of the Database
Each patient was entered once for each separate cytogenetic rear-

rangement. Most of these consisted of CNVs, but we found 10

apparently balanced rearrangements. So, for example, patients with

inverted duplication deletions were entered twice, once for the

deletion and again for the duplication. Three patients had three or

more rearrangements. Thus, the total number of entries greatly

exceeds the number of patients (see supporting information Table I

which may be found in the online version of this article).

We first organized all entries by chromosome, type of abnormal-

ity (breakpoint, deletion or duplication, rarely triplication or

quadruplication), and segment involved, all derived directly from

the karyotype. These data were hand curated to identify the shortest

regions of overlap between patients with overlapping deletions or

duplications; all apparently balanced breakpoints were included

with the deletions, while triplications and quadruplications were

included with duplications. Deletions (plus breakpoints) and du-

plications were treated separately, even when the same regions were

involved. We then sorted all entries based firstly on the individual

chromosome, then the critical region, then the type of abnormality,

and finally the specific segment involved, which could be larger than

the critical region.

Classification of Critical Regions (CR)

* Class 1 CR consist of regions with six or more patients, where at

least one, and usually two or more, were confirmed by our review

of brain imaging studies. When images from only one patient

were available for review (e.g., 1p36), we required confirmation

by independent reports from several different groups.
* Class 2 CR consist of regions with 3–5 patients reported, the

majority of which we could confirm in at least one patient by

review of brain imaging.
* Class 3 or possible CR consist of two patients including

at least one with confirmation of brain imaging, or three or
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more patients with no available imaging studies to confirm the

presence of ACC.

RESULTS

Cytogenetic Rearrangements
We identified 374 patients with reported or confirmed ACC and

documented cytogenetic rearrangements, including at least 101

previously unpublished individuals. Most cytogenetic abnormali-

ties were CNVs, and many comprised complex rearrangements

with more than one chromosome segment involved, so our analysis

contains 420 entries. These data are summarized in Table I and

Figure 2, and our complete data set is available online (see support-

ing information Table I which may be found in the online version of

this article).

We identified 12 class 1 CR spread over 10 chromosomes, with 10

due to deletions and 2 to duplications. The size of the CR varied from

3.67 to 16.4 Mb. The only ACC causative gene identified from one of

these regions thus far is AKT3 from 1q43-q44 [Boland et al., 2007],

although recent data suggest that FOXG1 in 14q12 may be another

[Shoichet et al., 2005; Ariani et al., 2008]. We designated another 18

loci as class 2 CR, with 8 due to deletions and 10 to duplications. The

size of these CR ranged from 1.6 to 78.4 Mb, in general larger than for

class 1 CR. Several of these regions are associated with common

deletion or duplication syndromes in humans that have not gener-

ally been considered to be ACC loci, including deletions 5p13 and

22q13, and duplication 22q11.2. We interpret these as common

CNV syndromes with low penetrance ACC.

We found many other possible loci with weaker support that we

designate as class 3 loci. Some of these are likely to be rare CNV

with high penetrance ACC, and others common CNV with low

penetrance ACC, including loci that result in ACC only in combi-

nation with other factors. Some of the remainder may be real CNV

that are unrelated to ACC, in which case the reported ACC is

likely to have a different cause. This phenomenon is being seen more

often in microarray studies, as a subset of patients have multiple

potentially pathogenic CNV. Finally, the clinical criteria for ACC

differ from center to center, so that some putative loci unsupported

by imaging or pathological data might not be included were these

data available for us to review. Where we encounter a published

report of ACC with no image of the CC we classify this as

‘‘provisional.’’

The penetrance of ACC appears to be high, although never 100%,

for some loci, especially deletions of 1q43-q44 (33/38 patients with

images shown in published reports) and 6q26-q27 (8/12 patients

with scans from our unpublished data) and inversion duplication

deletions of 8p. Penetrance appears to be higher among patients

with deletion or duplication of two ACC critical regions. The best

examples here are extended deletions of 1q42-q44 [Bedeschi et al.,

2006; Boland et al., 2007] and 6q25-q27 [Shen-Schwarz et al., 1989;

Rubtsov et al., 1996; Desai et al., 1999; Sukumar et al., 1999;

FIG. 2. Chromosome ideograms at 550 band resolution illustrating the class 1–3 loci. Deletions are represented on the left-hand side of the ideogram

with hatched boxes. Duplications are represented on the right-hand side of the ideogram with solid boxes. Class 1 loci are in red, class 2 in blue, and

class 3 in green.
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TABLE I. Summary of ACC Critical Regions

Class Chr Region CNV type ACC Two loci ACC confirmed CBL PMG NOS
1 1 1p36 del 8 1 0 1 2
2 1 1q42 del 3 5 (1 confirmed) 3 0 0 1
1 1 1q43-q44 del 35 5 (1 confirmed) 8 5 0 15
2 2 2q14.3-q21 dup 4 2 1 0 2
2 2 2q22-q31 del 4 1 0 0 3
2 2 2q33 del 3 1 1 1 2
3 2 2q37.3 del 2 1 0 0 0
3 2 3p26.3-p25 del 2 1 0 0 1
3 2 3p26.3-26.2 dup 2 1 1 0 1
3 3 3q13.1-q13.3 del 4 0 0 0 0
3 3 3q29 del 2 1 0 0 1
1 4 4p16.1-p16.3 del 15 1 1 1 2
3 4 4p16.3-p15.2 dup 3 0 0 1 1
2 4 4q35 del 3 1 1 1 0
2 5 5p13.3-p13.1 dup 3 1 1 0 1
3 5 5p15.33-p15.2 del 2 1 2 0 0
2 6 6p25 del 5 2 2 1 3
2 6 6q25.3-q24.1 dup 3 2 0 0 2
2 6 6q25.3-q25.1 del 3 8 (1 confirmed) 1 1 0 1
1 6 6q26-q27 del 12 8 (1 confirmed) 7 7 8 6
3 7 7q36.1-q36.3 del 4 0 0 0 0
1 8 8p22-p21.3 dup 21 38 (6 confirmed) 5 1 1 11
2 8 8p23.3 del 4 38 (6 confirmed) 1 0 0 9
3 9 9p24 del 3 0 0 0 0
2 9 9p24.3-p21.1 dup 4 1 1 0 2
1 9 9q34.3 del 6 1 0 0 3
3 10 10p15.3-p14 dup 4 0 0 0 0
3 10 10q23.2 del 2 1 0 0 1
3 10 10q26.1-q26.3 dup 3 0 0 0 1
2 11 11p15.1-p15.5 dup 3 1 1 1 1
1 11 11q25 dup 10 2 3 1 2
3 11 11q24.1-q25 del 3 0 0 0 2
1 13 13q32.3-q33.1 del 14 2 3 0 3
1 13 13q34 dup 22 1 0 0 2
2 14 14p13-q22 dup 4 1 0 0 3
1 14 14q12-q13.1 del 8 1 (0 confirmed) 1 0 0 5
1 14 14q32.3 del 9 1 (0 confirmed) 4 1 0 3
2 16 16q24.3 dup 4 1 0 0 0
3 17 17p13.3-p11.2 dup 3 0 0 0 0
2 18 18q12-q23 dup 3 1 0 0 0
3 18 18q21.1-q21.2 del 2 4 (0 confirmed) 0 0 0 0
3 18 18q23 del 2 4 (0 confirmed) 0 0 0 0
2 19 19q13 dup 3 1 0 0 0
3 20 20p13.3 dup 3 0 0 0 0
2 20 20q13.3 dup 3 1 1 0 0
1 21 21q22.11-q22.3 dup 11 1 0 0 2
1 21 21q22.2-q22.3 del 10 3 0 3 0
2 22 22q11.2-q13.3 dup 5 1 0 0 0
2 22 22q13.31-q13.33 del 5 1 0 0 2
1 X Xp22.3 del 6 2 1 0 1
1 X Xp27.3-q28 dup 6 2 1 0 1

Chr, chromosome; CNV, copy number variant; ACC, patients with agenesis of the corpus callosum; ACC confirmed, patients with ACC confirmed on brain imaging by the authors (see the Methods
Section); CBL, cerebellar malformation; PMG, polymicrogyria; NOS, brain malformation not otherwise specified; del, deletion; dup, duplication.
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Yamanouchi et al., 2005]. Patients have also been identified with

CNVs on two different chromosomes encompassing identified

critical regions, including records 4 and 5 (Lisdb subjects DP89-

003a1/a2), 28, 36, 132, 141 [Rott et al., 1972; Yamanouchi et al.,

2005; Boland et al., 2007; Poot et al., 2007] from supporting

information Table I (supporting information Table I may be found

in the online version of this article).

Several of our ACC loci overlap with critical regions for other

brain malformations, especially cerebellar malformations and the

cortical malformation polymicrogyria based on our published

[Dobyns et al., 2008] and unpublished (K.J. Millen, K. Aldinger,

W.B. Dobyns, unpublished cerebellar loci) data. We found nine loci

in common between our ACC and cerebellar malformation data-

bases, and four loci in common with our ACC and PMG databases.

Deletions of chromosomes 1q43-q44 and 6q26-q27 are associated

with all three malformations, although this appears robust only for

deletion 6q26-q27. All three malformations have been reported

with a few other loci, such as deletion 2q31-q33, which could be real

or reflect an unrecognized cryptic abnormality of another candidate

region. The loci are summarized in Table II.

Phenotype Data
We collated data on brain malformations other than ACC where

they were available. We were able to confirm the presence of a callosal

abnormality from published images or autopsy data, or from our

own data in only 74 of 374 (20%) patients, including 20 from our

primary patient database. For many other patients, additional brain

malformations were described but not shown. Cerebellar malfor-

mations were reported in 14 (10.8%) and polymicrogyria in 9

(6.7%) individuals with ACC class 1–3 loci. These are estimated

values as a small number of patients with unclassified CNVs had

cerebellar and cortical malformations together with ACC.

Other cortical malformations such as periventricular nodular

heterotopia, hydrocephalus, and brainstem abnormalities were also

reported. Hydrocephalus, ventriculomegaly (VM), and colpoce-

phaly were reported in numerous individuals. We were often unable

to differentiate between these abnormalities based on the limited

data provided, so they are listed together as VM in supporting

information Table I (supporting information Table I may be found

in the online version of this article). As expected, the incidence of

seizures and mental retardation are high, particularly when other

cortical malformations are present.

Descriptions of microcephaly and macrocephaly are common in

individuals with ACC. Despite this, few reports provided occipito-

frontal circumference (OFC) or percentile/z-score data, making

estimation of the severity difficult to determine. We included data

regarding microcephaly or macrocephaly when this was mentioned

in the report (see supporting information Table I which may be

found in the online version of this article), but could not correlate

either of these with ACC. The only exception was for deletions of

1q43-q44, which have been more consistently phenotyped. Of 37

published patients with deletion 1q4 and ACC for whom sufficient

information is available, 30 had microcephaly (OFC <2.5 SD) of

either postnatal onset or congenital onset with striking postnatal

progression [Boland et al., 2007]. Macrocephaly was rarely docu-

mented with only five individuals found in the database, all with

apparently isolated ACC.

The phenotype descriptions from both published and database

reports varied greatly. No information on physical features other

than ACC was available for approximately 20% of individuals

included in this report. More comprehensive data is available for

class 1 and 2 loci based on numerous reports, and we summarize

data supporting inclusion of some of the critical regions below.

Deletion 1p36
Deletion 1p36 (OMIM 607872) is the most common terminal

deletion syndrome associated with a clinically recognizable pheno-

type. While callosal abnormalities have been reported with deletion

of 1p36, many reports give few specific details regarding the CC and

show no images. In most, the CC was described as thin but not

absent. Three recent reviews of �190 patients with deletion 1p36

reported callosal abnormalities in only 5.8% [collated numbers

from: Gajecka et al., 2007; Bahi-Buisson et al., 2008; Battaglia et al.,

2008]. Therefore we do not consider this to be a strong ACC

candidate region. In a recent report of 13 patients with polymi-

crogyria and deletion of 1p36, midline sagittal images show a mildly

short CC in one patient, while three others have a thin but complete

CC [Dobyns et al., 2008]. In this paper, Figure 1A,E,I shows a thin

CC, while Figure 1M shows a short CC. A similar situation exists for

callosal abnormalities in deletions of 4p16, some of which appear to

cause a thin but intact CC in the presence of a diffuse reduction in

white matter volume [Righini et al., 2007].

Deletion 1q4
We found reports of 35 patients with ACC and deletion (or a

translocation breakpoint at) 1q4 that collectively support two or

possibly three ACC causative loci in this region. One report

describes three patients from one family with ACC and interstitial

deletion 1q42 that does not overlap with the more distal deletions

[Puthuran et al., 2005]. The major locus was delineated by reports of

29 patients with deletion 1q43-q44, ACC of variable severity,

TABLE II. Co-Occurrence of ACC Loci With Cerebellar Malformations and

Polymicrogyria

Locus ACC CBLa PMGb

1p36 8 — 13
1q43-q44 35 6 1
3q24-q25.3 2 10 —
6p25 5 10 —
6q26-q27 12 7 8
8p21-p22 59 1 —
9p24-p11.2 3 15 —
11q23-q25 9 2 —
13q32.3-q33.1 14 8 —
21q22.3 10 — 2
22q13.2-q13.33 5 4 —

CBL, cerebellar malformation; PMG, polymicrogyria.
aW.B. Dobyns, K.J. Millen, K. Aldinger, unpublished cerebellar loci.
bData from Dobyns et al. [2008].
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and consistent postnatal microcephaly (Fig. 1C,D). Several other

patients with deletion of this region have a normal CC, supporting

incomplete penetrance. Studies from three groups have attributed

the ACC to heterozygous loss of function of the AKT3 gene based on

its deletion in 27/29 patients, a balanced translocation breakpoint

located just 20 kb upstream of exon 1, and supportive data from two

mouse knockouts [Eash et al., 2005; Tschopp et al., 2005; Boland

et al., 2007; Hill et al., 2007; Merritt et al., 2007]. However, two

patients, one with total ACC and another with reported callosal

hypoplasia, had 1q44 deletions beginning�0.6 to 1 Mb telomeric to

AKT3 [Poot et al., 2007; van Bon et al., 2008]. We attribute this to

either a positional effect on AKT3 expression or a third ACC locus in

1q4. Another five patients have had larger deletions of 1q42-q44

that include both or all of these loci.

Deletions 6p25 and 6q2
We found five individuals with callosal abnormalities and deletions

of distal 6p (see supporting information Table I which may be found

in the online version of this article), but these account for only a

small proportion of patients reported with 6p25 deletions. How-

ever, many of them have not had brain imaging [Gould et al., 2004].

The phenotype, which includes ocular anterior segment abnormal-

ities, has been ascribed to deletion of the FOXQ1-FOXF2-FOXC1

gene cluster, especially FOXC1 [Maclean et al., 2005]. Imaging in

multiple patients with similar deletions has shown ventricular

enlargement and Dandy–Walker malformation as well as callosal

abnormalities, suggesting a common developmental pathway with

variable expressivity [Descipio et al., 2005; Maclean et al., 2005].

Two individuals with ring chromosome 6 have deletions of both

the 6p25 and 6q26-q27 loci (see supporting information Table I

which may be found in the online version of this article). Many

patients with a distal 6q2 deletion have been described with a variable

brain phenotype including periventricular nodular heterotopia,

PMG, cerebellar malformations, hydrocephalus, and ACC [Eash

et al., 2005; Sherr et al., 2005]. These data support the presence of two

ACC loci on distal chromosome 6q, as two apparently non-over-

lapping ACC loci have been identified, consisting of a class 1 locus on

6q26-q27 and a class 2 locus in 6q25 (Table I).

Rearrangements of 8p
The largest individual group of patients in this report has rearrange-

ments of chromosome 8p (Table I). The majority of these were 8p

inverted duplication deletions thought to be due to non-allelic

homologous recombination at a common inversion polymorphism

located between two low copy repeat (LCR) sites [Sugawara et al.,

2003], although several different rearrangements have been re-

ported [Ciccone et al., 2006; Giorda et al., 2007]. In this series, ACC

has been associated with terminal deletions, various pure duplica-

tions, and the common inverted duplication deletions of 8p (Table

I; see supporting information Table I which may be found in the

online version of this article). These reports collectively suggest

either one gene that can cause ACC when deleted or duplicated, or

the presence of at least two ACC loci, one associated with deletions

and the other with duplications. The penetrance appears to be high

as we were able to confirm ACC in 25% of individuals. However the

true penetrance is unknown given the lack of published images.

Deletion 13q
Deletions of 13q32 have been reported in association both with

neurodevelopmental abnormalities and malformations of other

systems such as the eye, limbs, and gastrointestinal tract [Ballarati

et al., 2007]. We found 14 published reports of ACC and deletions of

13q, three of which also had a cerebellar malformation. This allows

the identification of a critical region within 13q (13q32.3-q33.1) that

is consistently associated with ACC. One of these had a balanced

translocation between 1q43-q44 and 13q32 in which the breakpoint

on 1q43-q44 disrupts the AKT3 gene [Boland et al., 2007]. ZIC2 has

been suggested as a candidate gene on 13q32 for other brain

malformations including holoprosencephaly [Brown et al., 1998;

Ballarati et al., 2007; Dubourg et al., 2007]. ZIC2 is located within the

class 1 critical region identified here, on 13q32.3. This class 1 critical

region is 5.6 Mb in size and contains around 14 genes. Further work

will be required to identify other candidate genes within the region.

Deletion 14q
We have identified two discrete regions on chromosome 14q

associated with ACC (Table I). Terminal deletions of 14q have

been associated with several brain malformations, including cal-

losal abnormalities, PMG, heterotopia, and microcephaly [Masada

et al., 1989; Maurin et al., 2006; Ravnan et al., 2006; Schneider et al.,

2008]. Proximal deletions of 14q have also been associated with

ACC and microcephaly. One study suggested that deletion of

GARNL1 in 14q13.1 was responsible for the brain malformations,

although this has not been confirmed [Schwarzbraun et al., 2004].

Cranial MRI in the original patient in whom the deletion was

described had no specific brain malformation [Petek et al., 2003a].

Two patients with mutations in FOXG1B on 14q12 and hypoplasia

of the CC have recently been described with microcephaly, seizures,

severe mental retardation, and callosal abnormalities [Ariani et al.,

2008]. A single patient with ACC and a translocation involving

FOXG1 [Shoichet et al., 2005] has also been reported, making

FOXG1 the more likely candidate gene for ACC in this region.

Common Trisomies
Included in the database are 10 patients with trisomy 21 (Down

syndrome), 18 with trisomy 13 (Patau syndrome), and 23 with

trisomy 18 (Edward syndrome) associated with ACC. All patients

with partial trisomy (duplication) of these three chromosomes had

an additional deletion of a class 1 or 2 critical region. The presence of

ACC in these patients may be the result of two relatively common

abnormalities, ACC and non-disjunction, occurring within the

same individual.

DISCUSSION

We have used a comprehensive search strategy to identify numer-

ous chromosomal regions contributing to ACC (Table I and Fig 2).

We reasoned that a comprehensive database of patients with

established pathogenic CNVs would identify numerous loci con-

taining highly penetrant ACC causal genes, even if the regions

proved to be large. Our analysis of 374 individuals with abnor-

malities of the CC and structural chromosome rearrangements
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has identified 12 ACC loci supported by 6 or more subjects, another

18 loci supported by 3–5 subjects, and numerous other possible

loci. These data confirm the strong genetic contribution to ACC

reported previously [Dobyns, 1996; Schell-Apacik et al., 2008].

We hypothesize that most if not all of the 30 class 1 and class 2 loci

contain ACC causal genes, and that some of the many class 3 and

unclassified regions also contain ACC causal genes. Here it is likely

that separation of true from false loci will be aided by increasing

reports of patients with ACC and CNV, but complicated by an

increasing number of CNV regions identified per patient. We

anticipate that our data will prove important in evaluating the

significance of new and smaller loci found in the future. This

analysis is strengthened by recent data supporting the AKT3 gene

in 1q43-q44 and the FOXG1 gene in 14q12 as putative ACC causal

genes as both are located in class 1 critical regions. We expect that we

have identified many of the highly penetrant ACC loci associated

with heterozygous copy number changes in the human genome, but

expect that we have missed many low penetrance loci associated

with heterozygous copy number changes and also most autosomal

recessive forms of ACC.

Our data further supported by a recent report of chromosomal

aberrations in association with a number of different central

nervous system malformations that identified several potential

causative chromosomal regions in the etiology of ACC

[Tyshchenko et al., 2008]. These include duplication of 8p22-

p21 and deletions of 14q11.2-q13 and 1q42-q44, all of which we

classified as class 1 loci. They also identified deletions of 3q13.1-q21

in association with ACC, which includes 3q13.1-q13.3, a class 3 loci

in this report. They suggested the gene DISPA as a candidate gene on

1q42 but note that a recent study of patients whose deletions

included this gene had no callosal malformations on MRI brain

imaging [Shaffer et al., 2007]. As some of the patients included in

this study have been identified from the ECARUCA database used

in the study by Tyshchenko et al. [2008] some patients may be

included in both of these reports. However, it is not clear whether

those patients had ACC in combination with other malformations

that we excluded from this study, namely holoprosencephaly and

lissencephaly.

It is difficult to estimate the overlap of ACC with microcephaly or

macrocephaly. From the authors’ experience these are often con-

current malformations, for example, microcephaly of postnatal

onset is frequently described in patients with 1q44 deletions.

Macrocephaly is a useful diagnostic marker in recognizable syn-

dromes where a proportion of patients have also been reported to

have ACC; for example, Gorlin [Ozturk et al., 2003; Kimonis et al.,

2004] and Soto [Schaefer et al., 1997; Chen et al., 2002; Bedeschi

et al., 2006; Park et al., 2006] syndromes. Birth and serial OFC

measurement can be a useful diagnostic indicator in many disorders

as well as providing prognostic information. Therefore consistent

reporting of head size in publications of patients with brain

malformations will prove to be useful in differentiating different

syndromes.

The same issues surrounding diagnostic accuracy of ACC also

apply to cerebellar and other cortical malformations. However,

other brain malformations are common in patients [Hetts et al.,

2006] with ACC and their presence may be useful in the differenti-

ation of single gene and microdeletion/duplication syndromes.

More regions have been linked to ACC than other malformations

given the relative ease of diagnosis on a variety of imaging techni-

ques [Dobyns et al., 2008] (unpublished CBL data). One of the

authors (EHS) maintains a large database of patients with ACC as

part of the Brain Development Research Program (BDRP). In a

previous report using this resource the MRI scans of 142 patients

with ACC were reviewed by the authors. Overall 73 of 142 patients

within this cohort had additional cortical malformations including

PMG and heterotopia [Hetts et al., 2006]. They concluded that

callosal abnormalities are infrequently truly isolated. There is

considerable discrepancy between these figures and the data collat-

ed here which may reflect patient selection and differences in image

interpretation.

The presence or absence of a callosal abnormality in patients with

similar CNVs is likely to represent variation in penetrance and

expressivity of causative genes, as well as, in some cases, incon-

sistencies in reporting. A further potential mechanism in a small

number of patients may be the positional effects of CNVs on

neighboring genes; for example, the presence of ACC and 1q43-

44 abnormalities not including AKT3 [Boland et al., 2007]. Both

cerebellar malformations and PMG have been consistently reported

with cytogenetic rearrangements, several of which overlap with the

ACC loci reported here (Table II). Of particular interest are

deletions of chromosome 6q26-q27 in which patients have other

malformations such as heterotopia and hydrocephalus alongside

polymicrogyria and cerebellar abnormalities. However, as for the

1q4 region, substantial evidence supports the existence of two ACC

loci on distal 6q with variable penetrance and expression of ACC as

well as cerebellar and cortical malformations. The consistent asso-

ciation of ACC with other developmental brain malformations seen

in these reports (see supporting information Table I which may be

found in the online version of this article) suggests that the same

genes, or those expressed as part of the same pathways, confer

susceptibility to more than one recognizable malformation of brain

development.

Consistent diagnostic criteria, improved scanning techniques

and increased recognition of associated abnormalities will facilitate

gene mapping and allow definition of syndromes within this

heterogeneous group of patients. It will also allow clinicians to

tailor investigation and management strategies for individuals with

CNVs overlapping ACC critical regions. The increasing availability

of high-resolution array comparative genome hybridization has

already greatly improved our ability to identify potentially patho-

genic CNVs, and in the future the number of potential ACC loci is

likely to expand significantly.

The database should provide a valuable resource for the clinical

diagnosis and management of patients with ACC as well as those

with chromosomal rearrangements in whom ACC should be

suspected. We expect it to facilitate research projects aimed at

identifying new ACC causal genes.
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